Flutterby™! : Polynomal Regression & Machine Learning

Next unread comment / Catchup all unread comments User Account Info | Logout | XML/Pilot/etc versions | Long version (with comments) | Weblog archives | Site Map | | Browse Topics

Polynomal Regression & Machine Learning

2018-06-25 18:05:16.927658+02 by Dan Lyke 0 comments

RT Eλf Sternberg @elfsternberg:

Well. Is machine learning really just polynomial regression hidden under a mountain of make-work? https://arxiv.org/abs/1806.06850

Polynomial Regression As an Alternative to Neural Nets:

Despite the success of neural networks (NNs), there is still a concern among many over their "black box" nature. Why do they work? Here we present a simple analytic argument that NNs are in fact essentially polynomial regression models. This view will have various implications for NNs, e.g. providing an explanation for why convergence problems arise in NNs, and it gives rough guidance on avoiding overfitting. In addition, we use this phenomenon to predict and confirm a multicollinearity property of NNs not previously reported in the literature. Most importantly, given this loose correspondence, one may choose to routinely use polynomial models instead of NNs, thus avoiding some major problems of the latter, such as having to set many tuning parameters and dealing with convergence issues. We present a number of empirical results; in each case, the accuracy of the polynomial approach matches or exceeds that of NN approaches. A many-featured, open-source software package, polyreg, is available.

[ related topics: Nature and environment Software Engineering Law Work, productivity and environment Education Artificial Intelligence Model Building ]

comments in ascending chronological order (reverse):